而如果那人是随叫随到选择一个非黑的物件,那个物件正好是一个红的苹果,那么我们对得到一个分子大于分母的,几乎等于一的假分数。所以在这个情况下,看见一只红苹果确实会极微小地增加我们对「乌鸦都是黑色的」的信任度。
其实,随着一个人看到的不是黑色的东西的增加,「乌鸦都是黑色的」的几率会趋向于1。问题的综述
几千年以来,无数人观察了许多事务,比如地心引力法则,人们趋于相信其极可能是真理。这种类型的推理可以总结成“归纳法原理”:
如果实例X 被观察到和论断 T 相符合,那么论断 T 正确的概率增加。
亨佩尔给出了归纳法原理的一个例子:“所有乌鸦都是黑色的”论断。我们可以出去观察成千上万只乌鸦,然后发现他们都是黑的。在每一次观察之后,我们对“所有乌鸦都是黑的”的信任度会逐渐提高。归纳法原理在这里看起来合理的。
现在问题出现了。“所有乌鸦都是黑的” 的论断在逻辑上和“所有不是黑的东西不是乌鸦”等价。如果我们观察到一只红苹果,它不是黑的,也不是乌鸦,那么这次观察必会增加我们对“所有不是黑的东西不是乌鸦”的信任度,因此更加确信“所有的乌鸦都是黑的”!这个问题被总结成:
我从未见过紫牛,I never saw a purple cow
但若我见到一头,But if I were to see one
乌鸦皆黑的概率,Would the probability ravens are black
更加可能是一么?Have a better chance to be one?
的诗)
解决它和直觉的冲突,哲学家们提出了一些方法。美国逻辑学家纳尔逊·古德曼建议对我们的
乌鸦悖论推理添加一些限制,比如永远不要考虑支持论断“所有P满足Q”且同时也支持“没有P满足Q” 的实例。其他一些哲学家质疑“等价原理”。也许红苹果能够增加我们对论断“所有不是黑的东西不是乌鸦”的信任度,而不增加我们对 “所有乌鸦都是黑色的”信任。这个提议受到质疑,因为你不能对等价的两个命题有不同的信任度,如果你知道他们都是真的或都是假的。
古德曼,以及其后的威拉德·冯·奥曼·蒯因,使用术语“projectible predicate”来描述这些类似于“乌鸦”和“黑色”的命题, 所有这类命题是支持归纳推理法的;而“非projectible predicate”则为与只相反的后者, 如“非黑”和“非乌鸦”这些命题并不支持归纳推理法。蒯因还提出一个需要证实的猜想:如果任何命题是projectible的;在无限物件组成的全集中,一个projectible的命题的补集永远是非projectible的。
这样一来,虽然“所有乌鸦都是黑的”和“所有不是黑的东西都不是乌鸦”这两个命题所拥有的信任度必须相等,但只有“黑色的乌鸦”才能同时增加两者的信任度,而“非黑色的非乌鸦”并不增加任何一个命题的信任度。
还有些哲学家认为其实这个命题是完全正确的,出错的是我们自己的逻辑。其实观察到一个红色的苹果确实会增加乌鸦都是黑色的可能性!这就相当于:如果有人把宇宙中所有不是黑的物体都给你看,而你发现所有的物体都不是乌鸦,那你就完全可以断定所有乌鸦都是黑的了。这个“悖论”看上去荒谬只是因为宇宙中 “不是黑的”物体远远多于“乌鸦”,所以发现一个“不是黑的”物体只增加了极其微小的对于“乌鸦都是黑的”的信任度,而相对而言,每发现一只黑的乌鸦就是一个有力的证据了。
贝叶斯定理除了以上的陈述以外,“归纳法原理”还有另一种形式,就是贝叶斯推理。
设 X 为支持论断 T 的一个实例, 而 I 表示我们所有的已知信息。
乌鸦悖论表示论断 T 成立的几率,已知 X 和 I 都是成立的,可以推得
Pr*Pr
Pr=----------------------------
Pr
这里 Pr 表示在只有 I 是已知成立的情况下,T 成立的几率;Pr 表示在 T 和 I 都已知成立的情况下,X 成立的几率;而 Pr 表示在只有 I 是已知成立的情况下,X 成立的几率.
利用这个原理,这个悖论就不会出现了。如果有人随机选一个苹果,那么他看到一个红苹果的几率和“乌鸦”的颜色是完全没有关系的。这时分子等于分母,所以分数等于1,所以以上讨论的几率不会改变。所以看见一只红色的苹果不会增加人们对“乌鸦都是黑色的”的信任度。
而如果那人是随叫随到选择一个非黑的物件,那个物件正好是一个红的苹果,那么我们对得到一个分子大于分母的,几乎等于一的假分数。所以在这个情况下,看见一只红苹果确实会极微小地增加我们对“乌鸦都是黑色的”的信任度。
其实,随着一个人看到的不是黑色的东西的增加,“乌鸦都是黑色的”的几率会趋向于1。
投融网(www.ipo.hk)创建于2011年,
专业的企业上市孵化器,
助力专精特新,赋能细分行业独角兽。
财务税务:代理记账 财务规划 税务筹划
法律合规:公司合规 法律纠纷 ipo上市法务
知识产权:注册商标 专利申请 品牌策划
数字智能:网站建设 智能软件 公众号小程序
宣传推广:B2B平台 SEO优化 媒体财经公关
跨境海外:红筹架构 跨境基金 家族信托保险
政府招商:园区规划 园区招商 产业集群生态
资本运作:产业基金 融资策划 商业计划书
上市服务:前期规划 上市辅导 定增并购在融资
融资、融智、融技、融人才、融政策
从成立到上市,投融网提供一站式服务平台,注册成为平台会员可以发布企业产品和服务信息,推广企业品牌;对接券商、会计师事务所、律师事务所、软件开发公司、知识产权服务机构;对接企业投融资与上市信息、并购重组投行业务信息;在线结识更多人脉,构建投融资与上市服务生态圈。
欢迎各类机构洽谈合作。
邮箱:service@ipo.hk
电话:0755-33572246

